Selasa, 27 Januari 2015

Kendali Korden dengan Potensiometer

Kendali Korden dengan Potensiometer
Afifaturrahmah1,  Dyah Putri Puspitasari2, Feri Saputra Azat Sudrajat3
Teknik Elektronika, Politeknik Negeri Semarang
Jl. Prof. H. Soedarto, SH, Tembalang, Semarang, 50275



Intisari – Untuk mempermudah mengendalikan korden dengan mengatur perputaran sudut korden, maka dalam proyek ini dibuatlah aplikasi ARM (Advanced RISC Machine) menggunakan masukan potensiometer dan luaran berupa motor servo, potensiometer dan seven segment. Potensiometer masukan digunakan untuk menentukan gerakan korden,untuk menggerakan korden digunakan motor servo, sedangkan potensiometer luaran digunakan sebagai feedback pembanding antara keluaran dan input. Untuk menampilkan perputaran sudut korden digunakan seven segment, sedangkan ARM sebagai kontroler dan pemroses sinyal.
Kata Kunci : ARM, Potensiometer, Motor Servo, Seven segment.
Abstract to facilitate control blind by adjusting the rotation angle, then made an application in this project ARM (Advanced RISC Machine) using potentiometer inputs and outputs such as servo motors, potentiometers and seven segment. Potentiometer inputs used to determine the movement of blind, to drive the blind  used servo motor, while the potentiometer output is used as a feedback comparison between output and input. To display the rotation angle of the blind used seven segment, while the ARM as a controller and signal processing.

I.     Pendahuluan


Kemajuan teknologi kini semakin pesat, didukung dengan banyak kebutuhan manusia untuk mengerjakan sesuatu, kini ditekankan memakai teknologi karena mereka menganggap dengan adanya teknologi kini hidup dan pekerjaan mereka lebih efisien dan cepat. Dalam kehidupan kita sehari-hari dirumah, kita pasti melakukan banyak sekali kegiatan, diantaranya adalah membuka dan menutup korden jendela setiap hari dengan menghampiri jendela tersebut. Mungkin kita sudah terbiasa dengan kegiatan membuka dan menutup gorden jendela dengan menghampiri jendela ,tetapi ada kalanya kita ingin hal rutin tersebut dapat dikerjakaan secara otomatis, tanpa harus membuka dan menutupnya dengan menghampirinya. Oleh karena itu penulis mencoba membuat solusi alternatif dengan membuat Kendali Korden dengan Potensiometer yang terdapat box sebagai pengatur dari jarak jauh, sehingga untuk mengatur putaran korden tidak perlu menghampiri korden yang terpasang di jendela.

II.     Tinjauan Pustaka


Untuk mengetahui berbagai komponen dan peralatan yang dibutuhkan, maka disusunlah tinjauan pustaka sebagai acuan dalam merancang dan membuat aplikasi menggunakan ARM  cortexM0 ini.

A.    Potensiometer 


Potensiometer adalah resistor tiga terminal dengan sambungan geser yang membentuk pembagi tegangan dapat disetel. Jika hanya dua terminal yang digunakan (salah satu terminal tetap dan terminal geser), potensiometer berperan sebagai resistor variabel atau Rheostat. Potensiometer biasanya digunakan untuk mengendalikan peranti elektronik seperti pengendali suara pada penguat. Potensiometer yang dioperasikan oleh suatu mekanisme dapat digunakan sebagai transduser, misalnya sebagai sensor joystick.

1.     Elemen resistif
2.     Badan
3.     Penyapu (wiper)
4.     Sumbu
5.     Sambungan tetap pertama
6.     Sambungan penyapu
7.     Cincin
8.     Baut
9.     Sambungan tetap kedua
Potensiometer jarang digunakan untuk mengendalikan daya tinggi (lebih dari 1 Watt) secara langsung. Potensiometer digunakan untuk menyetel taraf isyarat analog (misalnya pengendali suara pada peranti audio), dan sebagai pengendali masukan untuk sirkuit elektronik. Sebagai contoh, sebuah peredup lampu menggunakan potensiometer untuk menendalikan pensakelaran sebuah TRIAC, jadi secara tidak langsung mengendalikan kecerahan lampu.
Potensiometer yang digunakan sebagai pengendali volume kadang-kadang dilengkapi dengan sakelar yang terintegrasi, sehingga potensiometer membuka sakelar saat penyapu berada pada posisi terendah.

B.     Motor Servo

Motor servo adalah sebuah perangkat atau aktuator putar (motor) yang dirancang dengan sistem kontrol closed feedback (umpan balik loop tertutup), sehingga dapat di atur untuk menetukan dan memastikan posisi sudut dari poros output motor, di mana posisi dari motor akan diinformasikan kembali ke rangkaian kontrol yang ada di dalam motor servo. Motor servo merupakan perangkat yang terdiri dari motor DC, rangkaian gear , potensiometer dan rangkaian kontrol. Rangkaian gear yang ada pada poros motor DC akan memperlambat putaran poros dan meningkatkan torsi motor servo, sedangkan potensiometer dengan perubahan resistansinya saat motor berputar berfungsi sebagai penentu batas posisi putaran poros motor servo.
Motor servo dikendalikan dengan dengan memberikan sinyal modulasi lebar pulsa (Pulse Wide Modulation/PWM) melalui kabel kontrol. Lebar pulsa sinyal kontrol yang diberikan akan menentukan posisi sudut putaran dari poros motor servo.


Gambar 2. Motor Servo

Penggunaan sistem kontrol loop tertutup pada motor servo berguna untuk mengontrol gerakan dan posisi akhir dari poros motor servo. Posisi poros output akan di sensor untuk mengetahui posisi poros sudah tepat seperti yang diinginkan atau belum dan jika belum, maka kontrol input akan mengirim sinyal kendali untuk membuat posisi poros tersebut tepat pada posisi yang diinginkan.
Berdasarkan prinsipnya jadi motor servo dapat digunakan sebagai output dari hasil penyeleksi botol berlabel, Jadi saat pada botol terdapat label, maka poros akan berputar ke arah kiri dan saat tidak ada label pada botol, maka poros akan berputar ke arah kanan.

C.     ARM CortexM0

ARM adalah prosesor dengan arsitektur set instruksi 32­bit RISC (Reduced Instruction Set Computer) yang dikembangkan oleh ARM Holdings. ARM merupakan singkatan dari Advanced RISC Machine.



Gambar 3. Keluarga Mikroprosesor ARM

Mikroprosesor ARM mempunyai beberapa keluarga untuk menjangkau berbagai aplikasi, salah satunya adalah ARM Cortex Prosesor Embedded (ARM Cortex Embedded Processors). Prosesor­-prosesor di keluarga seri Cortex­M telah dikembangkan khusus untuk domain mikrokontroler, dimana permintaan untuk kecepatan, determinasi waktu proses, dan manajemen interrupt bersama dengan jumlah gate silikon minimum (luas silikon yang minimum menentukan harga akhir prosesor) dan konsumsi daya yang minimum sangat diminati, seperti ARM Cortex­M0 yang merupakan prosesor untuk menggantikan aplikasi mikrokontroler 8­/16­bit dengan tipe ARM NUC120
ARM NUC120 merupakan sebuah modul mikronkontroler 32-bit berbasis ARM CortexM0.  ARM NUC 120 BOARD dilengkapi dengan program bootloader sehingga tidak membutuhkan divais programmer terpisah. NUC120 dapat beroperasi dengan kecepatan CPU sampai 48MHz. Telah dilengkapi dengan Full Speed USB 2.0 Device Controller yang sangat fleksibel dan dapat dikonfigurasi untuk berbagai aplikasi berbasis USB.

Gambar 4. DT-ARM NUC120
Spesifikasi       :
  1. Berbasis NUC120RD2BN dengan Flash memory APROM sebesar 64 Kbyte, 8 Kbyte SRAM, 4 Kbyte Data Flash.
  2. Memiliki kemampuan IAP (In Applicaton Programming) dan ISP (In System Programming) melalui bootloader software pada LDROM.
  3. Tersedia jalur SWD (Serial Wire Debug) yang dapat digunakan untuk debugging serta programming.
  4. Dapat diprogram langsung melalui jalur USB.
  5. Mendukung Peripheral DMA mode.
  6. Memiliki 8 channel ADC dengan resolusi 12 bit.
  7. Memiliki 4 buah timer 32 bit.
  8. Memiliki fungsi Watchdog dan RTC.
  9. Dilengkapi dengan 4 buah hardware PWM dengan resolusi 16 bit.
  10. Memiliki masing-masing 2 kanal jalur komunikasi UART, SPI, dan I2C.
  11. Memiliki 1 channel I2C.
  12. Tersedia antarmuka USB dan UART RS-485.
  13. Terdapat sensor suhu built-in dengan range -40 - 125°C  dengan resolusi 1°C. Sensor ini memiliki gain -1.76mV/°C dan offset 720 mV pada suhu 0°C.
  14. Memiliki hingga 45 jalur GPIO yang masing-masing dapat dikonfigurasi pull-up/ pull-down resistor, repeater mode, input inverter, dan open-drain mode.
  15. Terdapat 22 MHz internal osilator.
  16. Frekuensi osilator eksternal sebesar 12 MHz dan fitur PLL sampai dengan 48 MHz.
  17. Frekuensi osilator eksternal sebesar 32.768 KHz yang dapat digunakan untuk fungsi RTC dan Low Power Mode.
  18. Tersedia rangkaian reset manual.
  19. Bekerja pada tegangan 3,3 – 5,5 V.
  20. Dilengkapi dengan regulator 3,3 V dan 5 V dengan arus maksimum 800 mA
  21. Tersedia pilihan catu daya input : catu daya eksternal 6,5 – 12 VDC (via regulator), catu daya eksternal 3,3 – 5,5 VDC (tanpa melalui regulator), atau menggunakan sumber catu daya dari jalur USB.

D.     Seven segmen tiga digit


Seven Segment Display (7 Segment Display) dalam bahasa Indonesia disebut dengan Layar Tujuh Segmen adalah komponen Elektronika yang dapat menampilkan angka desimal melalui kombinasi-kombinasi segmennya. Seven Segment Display pada umumnya dipakai pada Jam Digital, Kalkulator, Penghitung atau Counter Digital, Multimeter Digital dan juga Panel Display Digital seperti pada Microwave Oven ataupun Pengatur Suhu Digital . Seven Segment Display pertama diperkenalkan dan dipatenkan pada tahun 1908 oleh Frank. W. Wood dan mulai dikenal luas pada tahun 1970-an setelah aplikasinya pada LED (Light Emitting Diode).
Seven Segment Display memiliki 7 Segmen dimana setiap segmen dikendalikan secara ON dan OFF untuk menampilkan angka yang diinginkan. Angka-angka dari 0 (nol) sampai 9 (Sembilan) dapat ditampilkan dengan menggunakan beberapa kombinasi Segmen. Selain 0 – 9, Seven Segment Display juga dapat menampilkan Huruf Hexadecimal dari A sampai F. Segmen atau elemen-elemen pada Seven Segment Display diatur menjadi bentuk angka “8” yang agak miring ke kanan dengan tujuan untuk mempermudah pembacaannya. Pada beberapa jenis Seven Segment Display, terdapat juga penambahan “titik” yang menunjukan angka koma decimal.  Terdapat beberapa jenis Seven Segment Display, diantaranya adalah Incandescent bulbs, Fluorescent lamps (FL), Liquid Crystal Display (LCD) dan Light Emitting Diode (LED).
LED 7 Segmen (Seven Segment LED)
Salah satu jenis Seven Segment Display yang sering digunakan oleh para penghobi Elektronika adalah 7 Segmen yang menggunakan LED (Light Emitting Diode) sebagai penerangnya.  LED 7 Segmen ini umumnya memiliki 7 Segmen atau elemen garis dan 1 segmen titik yang menandakan “koma” Desimal. Jadi Jumlah keseluruhan segmen atau elemen LED sebenarnya adalah 8. Cara kerjanya pun boleh dikatakan mudah, ketika segmen atau elemen tertentu diberikan arus listrik, maka Display akan menampilkan angka atau digit yang diinginkan sesuai dengan kombinasi yang diberikan.
Terdapat 2 Jenis LED 7 Segmen, diantaranya adalah “LED 7 Segmen common Cathode” dan “LED 7 Segmen common Anode”.

1)     LED 7 Segmen Tipe Common Cathode (Katoda)

Pada LED 7 Segmen jenis Common Cathode (Katoda), Kaki Katoda pada semua segmen LED adalah terhubung menjadi 1 Pin, sedangkan Kaki Anoda akan menjadi Input untuk masing-masing Segmen LED.  Kaki Katoda yang terhubung menjadi 1 Pin ini merupakan Terminal Negatif (-) atau Ground sedangkan Signal Kendali (Control Signal) akan diberikan kepada masing-masing Kaki Anoda Segmen LED.


2)     LED 7 Segmen Tipe Common Anode (Anoda)

Pada LED 7 Segmen jenis Common Anode (Anoda), Kaki Anoda pada semua segmen LED adalah terhubung menjadi 1 Pin, sedangkan kaki Katoda akan menjadi Input untuk masing-masing Segmen LED. Kaki Anoda yang terhubung menjadi 1 Pin ini akan diberikan Tegangan Positif (+) dan Signal Kendali (control signal) akan diberikan kepada masing-masing Kaki Katoda Segmen LED.



III.     PERANCANGAN ALAT

A.     Perangkat Keras dan Rangkaian Elektronika

Adapun sistem yang digunakan yaitu :
1.      Potensiometer
2.      Motor Servo
3.      Seven segment
4.      Potensiometer feedback

B.     Blok Diagram Hubungan Komponen Utama

Blok diagram aplikasi ARM menggunakan masukan sensor cahaya dengan luaran motor dapat dilihat pada gambar dibawah ini :





Gambar 5. Blok Diagram Komponen Utama

C.     Perangkat Lunak

Untuk diagram alir, program aplikasi ARM menggunakan masukan sensor cahaya dan keluaran motor.



Gambar 6. Diagram Alir


IV.     Pengujian Alat

Sensor putar atau potensiometer diuji dengan memutar posisi potensiometer, dengan cara memutar potensiometer tegangan yang masuk dari potensiometer ke pengkondisi sinyal berubah, ini menyebabkan nilai output yang dikeluarkan pengkondisi sinyal juga berubah dan menggerakan motor servo, servo yang bergerak menggerakan korden dan potensiometer feedback juga ikut bergerak, nilai potensiometer feedback dengan potensiometer input dibandingkan di pengkondisi sinyal, jika kedua potensiometer bernilai sama, maka gerakan motor akan berhenti, dan sudut putaran ditampilkan di seven segmen 3 digit.

V.     KESIMPULAN

Setelah melakukan percobaan, pengambilan data, dan penganalisaan terhadap data yang telah didapat pada penelitian ini, maka didapatkan kesimpulan yaitu sebagai berikut:
1.    Potensiometer masukan berfungsi sebagai pemberi nilai masukan ke pengkondisi sinyal, posisi potensiometer menentukan gerakan motor.
2.    Motor servo sebagai keluaran penggerak posisi korden, gerakan motor servo ditentukan oleh posisi potensiometer masukan.
3.    Potensiometer umpan balik sebagai kendali umpan balik ke pengkondisi sinyal, potensiometer ini berfungsi untuk membandingkan nilai input dan output.
4.    Tampilan tujuh ruas sebagai output penampil besarnya sudut putaran motor yang bergerak.

REFERENSI



Nama penulis Afifaturrahmah, Penulis dilahirkan di Semarang tanggal 22 April 1994. Penulis telah menempuh pendidikan formal di TK ‘Aisyiyah Bustanul Athfal 13 Semarang, MI Al-Khoiriyyah 1 Semarang, MTsN 1 Semarang, dan SMAN 3 Semarang. Tahun 2012 penulis telah menyelesaikan pendidikan SMA. Pada tahun 2012 penulis mengikuti seleksi mahasiswa baru diploma (D3) dan diterima menjadi mahasiswa baru diploma (D3) di kampus Politeknik Negeri Semarang (Polines) dengan Program Studi D3 Teknik Elektronika, Jurusan Teknik Elektro.




Nama penulis Dyah Putri Puspitasari, Penulis dilahirkan di Semarang tanggal 8 Agustus 1994. Penulis telah menempuh pendidikan formal di TK NU Jombang, SDN 1 Tampingan, SMPN 1 Boja, dan SMAN 1 boja. Tahun 2012 penulis telah menyelesaikan pendidikan SMA. Pada tahun 2012 penulis mengikuti seleksi mahasiswa baru diploma (D3) dan diterima menjadi mahasiswa baru diploma (D3) di kampus Politeknik Negeri Semarang (Polines) dengan Program Studi D3 Teknik Elektronika, Jurusan Teknik Elektro.





Nama penulis Feri Saputra Azat Sudrajat. Penulis dilahirkan di Brebes tanggal 29 Juli 1993. Penulis telah menempuh pendidikan formal di SDN  Janegara 01, SMPN 1 Jatibarang, dan SMKN 1 Adiwerna. Tahun 2012 penulis telah menyelesaikan pendidikan SMK. Pada tahun 2012 penulis mengikuti seleksi mahasiswa baru diploma (D3) dan diterima menjadi mahasiswa baru diploma (D3) di kampus Politeknik Negeri Semarang (Polines) dengan Program Studi D3 Teknik Elektronika, Jurusan Teknik Elektro.

Tidak ada komentar:

Posting Komentar